
238 Chem. Educator 1999, 4, 238–241

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)06339-1, 10.1007/s00897990339a, 460238hc.pdf

Undergraduate Projects in the Application of Artificial Intelligence to
Chemistry. I. Background

Hugh Cartwright

Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ,
England, hugh.cartwright@chem.ox.ac.uk

Abstract: The potential of Artificial Intelligence (AI) in the development of intelligent machines is widely
recognized. It is less widely appreciated that the methods which computer scientists use in their work on AI are
also applicable to the solution of numerous problems in science. In many cases, AI methods are preferable to
more conventional approaches, being superior in terms of time, quality of solution, or both. Most AI tools are
comparatively simple to understand, despite their power, and computer programs to implement them can be
written by anyone with average programming skills. This series of papers will demonstrate how AI methods are
of value in science, why they work, and how they can be introduced into the syllabus as undergraduate research
projects; suggestions of projects, illustrative programs and Java source code will be provided. This paper
introduces the topic of AI and explains some of the ways in which an AI program differs from a conventional
program.

Introduction

The evolution of science depends on the abilities and
inspiration of scientists, but it is also crucially dependent upon
the development of new experimental, theoretical, and
computational tools. Advances in computational chemistry
over the last three decades have been particularly marked, as
growth in computer power has allowed scientists to undertake
calculations that previously were too time-consuming.

A notable effect of this growth in processor speed has been
to open up entirely new fields of analysis. Some of the most
exciting new methods for tackling scientific problems lie
within the field of Artificial Intelligence (AI). AI was once
perceived to have as its limited (but nevertheless very
challenging) goal the development of intelligent machines and
agents. That goal remains, but gradually it has become
apparent that the scope of AI methods is far broader than the
mere production of clever robots [1–6]. AI is now recognized
as constituting a powerful set of tools in its own right, capable
of solving problems in such diverse areas as finance, pollution
control, reactor simulation, food quality assessment, bus
routing, and chemistry, to give just a few examples. As
computer speed increases, AI tools very rapidly become more
attractive, and it is not unreasonable to believe that, within a
decade, software relying upon the principles of AI will be
brought to bear upon many of the most intractable problems in
science and will be of fundamental importance in the
interpretation of scientific data.

In view of this, chemistry undergraduates whose interests
extend to computing should have the opportunity to learn
about AI and appreciate the impact it will have across science.
(Indeed, one might argue that all scientists should have at least
a passing acquaintance with the subject, such is its likely
future effect on science.) To fully understand how AI can be
used to interpret scientific data, hands-on experience is
extremely valuable. The chemistry syllabus is very full,
however, and although some chemistry departments already
include an element of AI in their computing instruction, in

many more cases undergraduate chemistry projects provide the
most appropriate route by which students can gain substantive
experience in the field. It is the aim of these papers to
introduce some of the AI methods that have the greatest
potential within chemistry, to outline their use, and to make
practical suggestions of projects through which AI methods
can be introduced into undergraduate research projects.

What is Artificial Intelligence?

It may seem odd that something as fundamental as the
definition of Artificial Intelligence, a field in which tens of
thousands of people work in industry and in universities, is not
universally agreed, but such is the case. Some in the field
regard the role of AI as the development of machines that, in
all their intellectual behavior and properties, can rival humans;
others argue that any computer programs that are differentiated
from the deterministic form of programming, with which most
scientists are familiar, by an ability to reason are examples of
AI.

In these papers we shall adopt a broad definition of an AI
computer program as being one that can learn. As we shall see
in the examples developed in later papers, the manner in which
a computer program learns is very varied. Some programs
(“Expert Systems” [7], for example) learn by being spoon-fed
information by a human expert, and in this way build a
database of knowledge and rules that can eventually be used to
provide advice. Other programs (such as “neural networks”
[8], “genetic algorithms” [9–11] or “ant systems” [12, 13])
autonomously investigate their environment, taking note of its
responses to their probing and so learn about the world in
which they operate; still others (“self-ordering maps” [14])
quite remarkably can extract useful information from a
database without any feedback at all to tell them whether their
conclusions are correct. This wide range of behavior may seem
confusing, but it is actually an asset, because the different
types of program are suited to different types of scientific
problems; consequently, as we shall see in subsequent papers,

Application of Artificial Intelligence to Chemistry. Chem. Educator, Vol. 4, No. 6, 1999 239

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)06339-1, 10.1007/s00897990339a, 460238hc.pdf

PRINT " Give me values for a, b and c please."
INPUT A
INPUT B
INPUT C
IF (B*B >= 4*A*C) THEN
{
 X1= (-B+(SQR(B*B-4*A*C)))/(2*A)
 X2= (-B-(SQR(B*B-4*A*C)))/(2*A)
 PRINT " The roots are " X1 ; " and "; X2
}
ELSE
{
 PRINT " The roots are complex."
}
END

Figure 1. A fragment of a BASIC program for finding the roots of a quadratic equation.

Figure 2. Flow chart for a simple tic-tac-toe-playing program.

a huge variety of scientific problems are amenable to attack
using AI programs.

How Can a Computer Program Learn?

A computer must be told precisely what it is to do before it
can accomplish anything; these instructions are encapsulated
as the computer program. But, if a program holds all the
information that is necessary for the computer to function, and
if that program is fully defined in advance by the programmer,
what freedom exists for the computer to learn? This is an
important question, which we will address using a simple
example.

The snippet of code given in Figure 1 constitutes a program
whose purpose is to determine the (real) roots of the quadratic
equation ax

2
+ bx + c = 0. It can do this for an infinite variety

of combinations of the coefficients a, b and c, but every
invocation of the program is fresh, and the program learns
nothing from experience, no matter how frequently it is run. It
is no more or less proficient at finding the roots of quadratic
equations on its hundredth use than it was on its first. This
must be the case, because there is nothing further for the
program to learn; even on its first use it already has all the
information it needs to perform its simple task perfectly.

AI programs are quite different from the simple program
shown above—they do learn from experience. By implication,
therefore, they must start life with only limited knowledge (or

none at all) about the problem they are to tackle and must
gradually construct an understanding of the problem. This can
be done in various ways, for example, by interacting with an
expert, with the user, or with the environment. To illustrate, we
present an example that, though it is trivial enough that it falls
only on the margins of AI, does provide some insight into how
learning can occur.

Computer Learning—A Simple Example

Figure 2 shows a schematic for a computer program that can
learn to play tic-tac-toe (noughts-and-crosses) at a modest
level. This program is tackling a nonscientific task, but the
principles extrapolate readily to practical scientific problems.

Tic-tac-toe is a pencil-and-paper game with which almost
every child (and adult) is familiar. Players take it in turns to
add O’s or X’s to a 9-box grid with the aim of being the first to
complete a line of zeros or crosses along a horizontal,
diagonal, or vertical row. If a computer is to play this game it
needs to be able to accomplish several tasks:

i) recognize the state of the board at any stage of the game;

ii) determine a legal move to play;

iii) recognize when the game is over.

If the computer can perform these steps and no more,
however, it will never be much of a player. To be able to win
consistently it needs, in step (ii), to make not just legal moves,
but to make good moves. There are two quite different ways
in which it might manage this. The computer could store every
conceivable position that might arise in the game, together
with the “best” move to make in each situation, as defined in
advance by the programmer; it could then proceed by always
following this predetermined “best” route. This strategy might
succeed, but it relies upon the programmer knowing in
advance the best possible move for every game position. An
alternative strategy is for the computer itself to learn what the
best move is for each game position. Let us see how this can
be done.

We first consider how the computer might deal with tasks i–
iii.

i) Recognize the state of the board. A simple way in which
the computer could recognize the state of the game is for it to

240 Chem. Educator, Vol. 4, No. 6, 1999 Cartwright

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)06339-1, 10.1007/s00897990339a, 460238hc.pdf

Figure 3. An early stage in a typical game.

Figure 4. A game about to end in a draw.

have access to an array (we shall call it the “grid_state”
array), which contains an entry corresponding to every
possible position that may arise in the game. Any method
might be used to store these positions. In this example, we will
number the boxes consecutively in the grid, and then in
grid_state denote a box that contains an O by a zero, a
box that contains an X by a one, and an empty box with a nine.
According to this encoding, if the grid boxes are numbered in
the fashion shown in Figures 3 and 4, the game position shown
in Figure 3 would be stored as 919909109, the game position
shown in Figure 4 would be encoded as 001110019, and the
starting position, 999999999.

ii) Determine a suitable move to make. Once the computer
has determined the current state of the game, it must chose a
move. A “dumb” program, with no understanding whatsoever,
would make any move provided that it was legal, picking an
empty square at random. A “pretrained” program or an
“intelligent” program, however, would have to select a move
according to some algorithm. For this purpose, we will assume
that the computer can consult a second array which we shall
call “moves.” For any selected state of the grid this contains
the number of the box that the computer should now chose as
its move in order to maximize its chance of winning the game.
In the pretrained program, this move is set in advance; in the
intelligent program it will be determined by experience.

iii) Recognize when the game is over. It is a simple matter
for the computer to determine after any move whether the
game is complete, by inspecting the grid_state array to

determine whether either player has completed a row, or the
board is full.

The game then proceeds as follows:

• The board is cleared, and the computer checks the
grid_state array to find the current position. It then
reads the moves array to find out where to place its cross.

• The player responds to the computer’s move by placing
an O in an unoccupied box.

• The computer determines the new state of the grid from
the grid_state array, checks that the game is not over,
and again consults the corresponding entry in the moves
array to find out what its next move should be.

These steps are repeated until either one player wins, or until
no blank boxes remain.

Once the game is over, both dumb and pretrained programs
are immediately ready for their next game, because the way
they play is completely unaffected by experience. An
intelligent program, however, must learn from the game in
which it has just been involved. All the computer’s knowledge
is encapsulated in the moves array—this array is in essence
the “memory” of the computer program—so it is this array
which must be modified if the computer is to learn. We can
accomplish this if we include a second entry in the moves
array, which is a weight; this weight is a measure of how likely
it is that, having made the move to which the weight
corresponds, the computer will win the game.

When the program is run for the very first time, every entry
in the moves array is set at random—the computer knows
nothing, so any arbitrary move is as good as any other. Every
weight is set arbitrarily to five.

At the end of each game, the entries in the moves array are
adjusted to reflect the successes and failures of the computer.
If the computer has won the game, the plays it made were
productive. It needs to be encouraged to make the same moves
in the future when it faces the same situations, so the weights
of all moves it made during the game are increased by (the
arbitrary value of) one. If the computer has lost the game, its
moves were poor. Accordingly, the weights of all moves it
made during the game are decreased (again by one). For some
moves, this decrement may reduce the associated weight to
less than zero; if this happens a new legal move is chosen at
random, placed in the moves array, and given a weight of
zero.

How does the program learn as a result of this adjustment of
weights? Initially, the computer knows nothing, because all its
moves were chosen at random. Gradually, however, when by
chance it makes the right moves and as a consequence wins a
game, the moves that lead to that success are rewarded by an
increase in their weights, so they will be selected again when
the computer encounters an identical board position in future
games. Unproductive moves, which have lead to a loss, are
penalized. Soon the weights of such moves fall below zero, at
which point they are replaced by alternative moves selected at
random.

Over time, the weights of productive moves are reinforced,
whereas those moves that lead to the computer losing the game
are replaced by other randomly-selected moves, which, if
valuable, are rewarded. In this fashion, the computer discards
poor moves and reinforces sound ones—it is learning how to
win.

Application of Artificial Intelligence to Chemistry. Chem. Educator, Vol. 4, No. 6, 1999 241

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)06339-1, 10.1007/s00897990339a, 460238hc.pdf

This is a particularly simple example, but it does illustrate
how computers can develop knowledge. Two aspects of this
learning are particularly worthy of note:

i) The computer is learning responses, not rules. For
example, the computer cannot derive the rule

If my opponent has two zeros in a row, I must position my
cross so as to block the row off, otherwise, I shall lose the
game.

Although it cannot discover this rule, it can learn the correct
action to take to implement the rule. That is, it learns to make
the right move in a particular position, but does not understand
why it should do it. (Some forms of neural net are an exception
to this; much attention is now being paid to forms of neural
nets that can derive rules from data. These form a method of
great potential in chemistry, and will be discussed in a later
paper).

ii) We cannot predict how the computer will learn,
because the evolution of the weights, which form the
program’s memory, depends upon the moves chosen by its
opponent and also by the randomly chosen contents of the
moves array when the program first starts operation. This
random element is a characteristic of many types of AI
programs, and indeed it is crucial to the operation of some
[10].

What Kinds of Problems Can AI Programs Tackle?

It will be obvious that few, if any, problems in chemistry
resemble tic-tac-toe in form, nor are they generally so simple,
so the relevance of this game to real scientific problems may
not be obvious. It is not the game described above which is of
importance, however, but the manner in which it illustrates
that, relying not on explicit instruction but experience, a
computer can learn. Real AI programs use more sophisticated
methods to develop knowledge, and there is a role for such
programs in chemistry, tackling problems for which the route
to a solution is not self-evident. Later papers will discuss in
more detail the kinds of tasks that AI programs can
successfully undertake, but it would be appropriate here to
mention a few examples of roles that AI programs may play.

The earliest AI programs in chemistry—indeed some of the
earliest AI applications to any subject—were forms of expert
system. In such programs, the knowledge of an expert in a
field is encoded in such a way that the computer can reason in
a manner similar to that which an expert might employ. It
follows, therefore, that the program should reach the same
conclusions as an expert would when presented with the same
data. Early examples of expert systems involved the
interpretation of mass spectral fragmentation patterns and the
determination of the appropriate materials to use for protective
gloves when handling dangerous chemicals.

More recently, neural networks have been used to analyze
infrared spectra, genetic algorithms to determine the efficient
operation of a chemical flowshop, and pheromone trail (ant
system) algorithms to optimize synthetic routes.

These applications share an important characteristic: no
“conventional” (deterministic) algorithm exists that can solve

them exactly. This is almost invariably a characteristic of AI
applications; where deterministic methods exist, they are often
faster than AI methods; where they are absent, or too
complicated to use, AI methods may provide a route to high-
quality answers in a reasonable time.

Are AI Programs Difficult to Implement?

Full-scale AI applications may appear complicated, but their
principles are generally straightforward. Indeed, it is
remarkable that, even though the logic underlying genetic
algorithms, neural networks or self-ordering maps is simple,
the methods themselves are capable of solving complex
problems. Later papers will present the principles of these
techniques in detail so that novice users, familiar with
programming, but not with AI, will be able to code working
examples. These papers will outline for each method examples
of how they can be used in chemistry, and will show how
straightforward it is for undergraduates to prepare meaningful
AI applications.

References

1. Ordonez, R.; Zumberge, J.; Spooner, J. T.; Passino, K. M. “Adaptive
Fuzzy Control: Experiments and Comparative Advantages” IEEE-
FUZZ 1997, 5(2), 167.

2. Russo, M. “FuGeNeSys—A Fuzzy Genetic Neural System for Fuzzy
Modelling” IEEE-FUZZ 1998, 6(3), 373.

3. Goonatilake, S.; Khebbal, S. Intelligent Hybrid Systems; Wiley:
Chichester, 1995.

4. Issott, D. The Operation of Resin Processes by Hybrid Genetic
Algorithm-Fuzzy Logic Control. Chemistry Part II Thesis, Oxford
University, U.K., 1999.

5. Becerra, V.; Roberts, P. D.; Griffiths, G. W. “Novel Developments
in Process Optimization Using PredictiveControl” J. Proc. Cont.
1998, 8(2), 117.

6. Cartwright, H. M. Applications of Artificial Intelligence in
Chemistry; Oxford University Press: Oxford, U.K., 1993.

7. Zhu, Q.; Stillman, M. J. “Expert Systems and Analytical Chemistry:
Recent Progress in the ACexpert Project” J. Chem. Inf. Comput. Sci.
1996, 36, 497.

8. Porter, A. Neural Networks for Interpretation of Real-time Infrared
Spectra of Pollutants in the Workplace. Chemistry Part II Thesis,
Oxford University, U.K., 1999.

9. Keun, K. Quantitative Structure-Activity Analysis of N-Substituted
Arenes using Genetic Algorithms. Chemistry Part II Thesis, Oxford
University, U.K., 1997.

10. Handbook of Genetic Algorithms; Davis, L., Ed.; Van Nostrand
Reinhold: New York, 1991.

11. Tuson, A. L. The Use of Genetic Algorithms to Optimise Flowshops
of Unrestricted Topology. Chemistry Part II Thesis, Oxford
University, U.K., 1994.

12. Hopkins, J. A. Pheromone Trail Algorithms. Chemistry Part II
Thesis, Oxford University, U.K., 1995.

13. Cartwright, H. M.; Hopkins, J. A. Evolutionary Design of Synthetic
Routes in Chemistry. In Proceedings of the AISB Conference on
Evolutionary Computing, University of Sussex, U.K., 1996.

14. Saunders, J. Investigation of Structure-Biodegradability
Relationships Using Self-Organizing Maps. Chemistry Part II
Thesis, Oxford University, U.K., 1997.

