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Abstract: The potential of Artificial Intelligence (AI) in the development of intelligent machines is widely 
recognized. It is less widely appreciated that the methods which computer scientists use in their work on AI are 
also applicable to the solution of numerous problems in science. In many cases, AI methods are preferable to 
more conventional approaches, being superior in terms of time, quality of solution, or both. Most AI tools are 
comparatively simple to understand, despite their power, and computer programs to implement them can be 
written by anyone with average programming skills. This series of papers will demonstrate how AI methods are 
of value in science, why they work, and how they can be introduced into the syllabus as undergraduate research 
projects; suggestions of projects, illustrative programs and Java source code will be provided. This paper 
introduces the topic of AI and explains some of the ways in which an AI program differs from a conventional 
program. 

Introduction 

The evolution of science depends on the abilities and 
inspiration of scientists, but it is also crucially dependent upon 
the development of new experimental, theoretical, and 
computational tools. Advances in computational chemistry 
over the last three decades have been particularly marked, as 
growth in computer power has allowed scientists to undertake 
calculations that previously were too time-consuming. 

A notable effect of this growth in processor speed has been 
to open up entirely new fields of analysis. Some of the most 
exciting new methods for tackling scientific problems lie 
within the field of Artificial Intelligence (AI). AI was once 
perceived to have as its limited (but nevertheless very 
challenging) goal the development of intelligent machines and 
agents. That goal remains, but gradually it has become 
apparent that the scope of AI methods is far broader than the 
mere production of clever robots [1–6]. AI is now recognized 
as constituting a powerful set of tools in its own right, capable 
of solving problems in such diverse areas as finance, pollution 
control, reactor simulation, food quality assessment, bus 
routing, and chemistry, to give just a few examples. As 
computer speed increases, AI tools very rapidly become more 
attractive, and it is not unreasonable to believe that, within a 
decade, software relying upon the principles of AI will be 
brought to bear upon many of the most intractable problems in 
science and will be of fundamental importance in the 
interpretation of scientific data. 

In view of this, chemistry undergraduates whose interests 
extend to computing should have the opportunity to learn 
about AI and appreciate the impact it will have across science. 
(Indeed, one might argue that all scientists should have at least 
a passing acquaintance with the subject, such is its likely 
future effect on science.) To fully understand how AI can be 
used to interpret scientific data, hands-on experience is 
extremely valuable. The chemistry syllabus is very full, 
however, and although some chemistry departments already 
include an element of AI in their computing instruction, in 

many more cases undergraduate chemistry projects provide the 
most appropriate route by which students can gain substantive 
experience in the field. It is the aim of these papers to 
introduce some of the AI methods that have the greatest 
potential within chemistry, to outline their use, and to make 
practical suggestions of projects through which AI methods 
can be introduced into undergraduate research projects. 

What is Artificial Intelligence? 

It may seem odd that something as fundamental as the 
definition of Artificial Intelligence, a field in which tens of 
thousands of people work in industry and in universities, is not 
universally agreed, but such is the case. Some in the field 
regard the role of AI as the development of machines that, in 
all their intellectual behavior and properties, can rival humans; 
others argue that any computer programs that are differentiated 
from the deterministic form of programming, with which most 
scientists are familiar, by an ability to reason are examples of 
AI. 

In these papers we shall adopt a broad definition of an AI 
computer program as being one that can learn. As we shall see 
in the examples developed in later papers, the manner in which 
a computer program learns is very varied. Some programs 
(“Expert Systems” [7], for example) learn by being spoon-fed 
information by a human expert, and in this way build a 
database of knowledge and rules that can eventually be used to 
provide advice. Other programs (such as “neural networks” 
[8], “genetic algorithms” [9–11] or “ant systems” [12, 13]) 
autonomously investigate their environment, taking note of its 
responses to their probing and so learn about the world in 
which they operate; still others (“self-ordering maps” [14]) 
quite remarkably can extract useful information from a 
database without any feedback at all to tell them whether their 
conclusions are correct. This wide range of behavior may seem 
confusing, but it is actually an asset, because the different 
types of program are suited to different types of scientific 
problems; consequently, as we shall see in subsequent papers, 
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PRINT " Give me values for a, b and c please." 
INPUT A 
INPUT B 
INPUT C 
IF (B*B >= 4*A*C) THEN 
{ 
 X1= (-B+(SQR(B*B-4*A*C)))/(2*A) 
 X2= (-B-(SQR(B*B-4*A*C)))/(2*A) 
 PRINT " The roots are " X1 ; " and "; X2 
} 
ELSE 
{ 
 PRINT " The roots are complex." 
} 
END 

 
Figure 1. A fragment of a BASIC program for finding the roots of a quadratic equation. 

 
Figure 2. Flow chart for a simple tic-tac-toe-playing program. 

a huge variety of scientific problems are amenable to attack 
using AI programs. 

How Can a Computer Program Learn? 

A computer must be told precisely what it is to do before it 
can accomplish anything; these instructions are encapsulated 
as the computer program. But, if a program holds all the 
information that is necessary for the computer to function, and 
if that program is fully defined in advance by the programmer, 
what freedom exists for the computer to learn? This is an 
important question, which we will address using a simple 
example. 

The snippet of code given in Figure 1 constitutes a program 
whose purpose is to determine the (real) roots of the quadratic 
equation ax

2 
+ bx + c = 0. It can do this for an infinite variety 

of combinations of the coefficients a, b and c, but every 
invocation of the program is fresh, and the program learns 
nothing from experience, no matter how frequently it is run. It 
is no more or less proficient at finding the roots of quadratic 
equations on its hundredth use than it was on its first. This 
must be the case, because there is nothing further for the 
program to learn; even on its first use it already has all the 
information it needs to perform its simple task perfectly. 

AI programs are quite different from the simple program 
shown above—they do learn from experience. By implication, 
therefore, they must start life with only limited knowledge (or 

none at all) about the problem they are to tackle and must 
gradually construct an understanding of the problem. This can 
be done in various ways, for example, by interacting with an 
expert, with the user, or with the environment. To illustrate, we 
present an example that, though it is trivial enough that it falls 
only on the margins of AI, does provide some insight into how 
learning can occur. 

Computer Learning—A Simple Example 

Figure 2 shows a schematic for a computer program that can 
learn to play tic-tac-toe (noughts-and-crosses) at a modest 
level. This program is tackling a nonscientific task, but the 
principles extrapolate readily to practical scientific problems. 

Tic-tac-toe is a pencil-and-paper game with which almost 
every child (and adult) is familiar. Players take it in turns to 
add O’s or X’s to a 9-box grid with the aim of being the first to 
complete a line of zeros or crosses along a horizontal, 
diagonal, or vertical row. If a computer is to play this game it 
needs to be able to accomplish several tasks: 

i) recognize the state of the board at any stage of the game; 

ii) determine a legal move to play;  

iii) recognize when the game is over. 

If the computer can perform these steps and no more, 
however, it will never be much of a player. To be able to win 
consistently it needs, in step (ii), to make not just legal moves, 
but to make good moves. There are two quite different ways 
in which it might manage this. The computer could store every 
conceivable position that might arise in the game, together 
with the “best” move to make in each situation, as defined in 
advance by the programmer; it could then proceed by always 
following this predetermined “best” route. This strategy might 
succeed, but it relies upon the programmer knowing in 
advance the best possible move for every game position. An 
alternative strategy is for the computer itself to learn what the 
best move is for each game position. Let us see how this can 
be done. 

We first consider how the computer might deal with tasks i–
iii. 

i) Recognize the state of the board. A simple way in which 
the computer could recognize the state of the game is for it to 



240 Chem. Educator, Vol. 4, No. 6, 1999 Cartwright 

© 1999 Springer-Verlag New York, Inc., S1430-4171(99)06339-1, 10.1007/s00897990339a, 460238hc.pdf 

 
Figure 3. An early stage in a typical game. 

 
Figure 4. A game about to end in a draw. 

have access to an array (we shall call it the “grid_state” 
array), which contains an entry corresponding to every 
possible position that may arise in the game. Any method 
might be used to store these positions. In this example, we will 
number the boxes consecutively in the grid, and then in 
grid_state denote a box that contains an O by a zero, a 
box that contains an X by a one, and an empty box with a nine. 
According to this encoding, if the grid boxes are numbered in 
the fashion shown in Figures 3 and 4, the game position shown 
in Figure 3 would be stored as 919909109, the game position 
shown in Figure 4 would be encoded as 001110019, and the 
starting position, 999999999. 

ii) Determine a suitable move to make. Once the computer 
has determined the current state of the game, it must chose a 
move. A “dumb” program, with no understanding whatsoever, 
would make any move provided that it was legal, picking an 
empty square at random. A “pretrained” program or an 
“intelligent” program, however, would have to select a move 
according to some algorithm. For this purpose, we will assume 
that the computer can consult a second array which we shall 
call “moves.” For any selected state of the grid this contains 
the number of the box that the computer should now chose as 
its move in order to maximize its chance of winning the game. 
In the pretrained program, this move is set in advance; in the 
intelligent program it will be determined by experience. 

iii) Recognize when the game is over. It is a simple matter 
for the computer to determine after any move whether the 
game is complete, by inspecting the grid_state array to 

determine whether either player has completed a row, or the 
board is full. 

The game then proceeds as follows: 

• The board is cleared, and the computer checks the 
grid_state array to find the current position. It then 
reads the moves array to find out where to place its cross. 

• The player responds to the computer’s move by placing 
an O in an unoccupied box. 

• The computer determines the new state of the grid from 
the grid_state array, checks that the game is not over, 
and again consults the corresponding entry in the moves 
array to find out what its next move should be. 

These steps are repeated until either one player wins, or until 
no blank boxes remain. 

Once the game is over, both dumb and pretrained programs 
are immediately ready for their next game, because the way 
they play is completely unaffected by experience. An 
intelligent program, however, must learn from the game in 
which it has just been involved. All the computer’s knowledge 
is encapsulated in the moves array—this array is in essence 
the “memory” of the computer program—so it is this array 
which must be modified if the computer is to learn. We can 
accomplish this if we include a second entry in the moves 
array, which is a weight; this weight is a measure of how likely 
it is that, having made the move to which the weight 
corresponds, the computer will win the game. 

When the program is run for the very first time, every entry 
in the moves array is set at random—the computer knows 
nothing, so any arbitrary move is as good as any other. Every 
weight is set arbitrarily to five. 

At the end of each game, the entries in the moves array are 
adjusted to reflect the successes and failures of the computer. 
If the computer has won the game, the plays it made were 
productive. It needs to be encouraged to make the same moves 
in the future when it faces the same situations, so the weights 
of all moves it made during the game are increased by (the 
arbitrary value of) one. If the computer has lost the game, its 
moves were poor. Accordingly, the weights of all moves it 
made during the game are decreased (again by one). For some 
moves, this decrement may reduce the associated weight to 
less than zero; if this happens a new legal move is chosen at 
random, placed in the moves array, and given a weight of 
zero. 

How does the program learn as a result of this adjustment of 
weights? Initially, the computer knows nothing, because all its 
moves were chosen at random. Gradually, however, when by 
chance it makes the right moves and as a consequence wins a 
game, the moves that lead to that success are rewarded by an 
increase in their weights, so they will be selected again when 
the computer encounters an identical board position in future 
games. Unproductive moves, which have lead to a loss, are 
penalized. Soon the weights of such moves fall below zero, at 
which point they are replaced by alternative moves selected at 
random. 

Over time, the weights of productive moves are reinforced, 
whereas those moves that lead to the computer losing the game 
are replaced by other randomly-selected moves, which, if 
valuable, are rewarded. In this fashion, the computer discards 
poor moves and reinforces sound ones—it is learning how to 
win. 
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This is a particularly simple example, but it does illustrate 
how computers can develop knowledge. Two aspects of this 
learning are particularly worthy of note: 

i) The computer is learning responses, not rules. For 
example, the computer cannot derive the rule 

If my opponent has two zeros in a row, I must position my 
cross so as to block the row off, otherwise, I shall lose the 
game. 

Although it cannot discover this rule, it can learn the correct 
action to take to implement the rule. That is, it learns to make 
the right move in a particular position, but does not understand 
why it should do it. (Some forms of neural net are an exception 
to this; much attention is now being paid to forms of neural 
nets that can derive rules from data. These form a method of 
great potential in chemistry, and will be discussed in a later 
paper). 

ii) We cannot predict how the computer will learn, 
because the evolution of the weights, which form the 
program’s memory, depends upon the moves chosen by its 
opponent and also by the randomly chosen contents of the 
moves array when the program first starts operation. This 
random element is a characteristic of many types of AI 
programs, and indeed it is crucial to the operation of some 
[10]. 

What Kinds of Problems Can AI Programs Tackle? 

It will be obvious that few, if any, problems in chemistry 
resemble tic-tac-toe in form, nor are they generally so simple, 
so the relevance of this game to real scientific problems may 
not be obvious. It is not the game described above which is of 
importance, however, but the manner in which it illustrates 
that, relying not on explicit instruction but experience, a 
computer can learn. Real AI programs use more sophisticated 
methods to develop knowledge, and there is a role for such 
programs in chemistry, tackling problems for which the route 
to a solution is not self-evident. Later papers will discuss in 
more detail the kinds of tasks that AI programs can 
successfully undertake, but it would be appropriate here to 
mention a few examples of roles that AI programs may play. 

The earliest AI programs in chemistry—indeed some of the 
earliest AI applications to any subject—were forms of expert 
system. In such programs, the knowledge of an expert in a 
field is encoded in such a way that the computer can reason in 
a manner similar to that which an expert might employ. It 
follows, therefore, that the program should reach the same 
conclusions as an expert would when presented with the same 
data. Early examples of expert systems involved the 
interpretation of mass spectral fragmentation patterns and the 
determination of the appropriate materials to use for protective 
gloves when handling dangerous chemicals. 

More recently, neural networks have been used to analyze 
infrared spectra, genetic algorithms to determine the efficient 
operation of a chemical flowshop, and pheromone trail (ant 
system) algorithms to optimize synthetic routes. 

These applications share an important characteristic: no 
“conventional” (deterministic) algorithm exists that can solve 

them exactly. This is almost invariably a characteristic of AI 
applications; where deterministic methods exist, they are often 
faster than AI methods; where they are absent, or too 
complicated to use, AI methods may provide a route to high-
quality answers in a reasonable time. 

Are AI Programs Difficult to Implement? 

Full-scale AI applications may appear complicated, but their 
principles are generally straightforward. Indeed, it is 
remarkable that, even though the logic underlying genetic 
algorithms, neural networks or self-ordering maps is simple, 
the methods themselves are capable of solving complex 
problems. Later papers will present the principles of these 
techniques in detail so that novice users, familiar with 
programming, but not with AI, will be able to code working 
examples. These papers will outline for each method examples 
of how they can be used in chemistry, and will show how 
straightforward it is for undergraduates to prepare meaningful 
AI applications. 
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